產(chǎn)品詳情
正品塑料TPE Monprene OM-12252
TPE是一種特殊的具有塑料和橡膠雙重特性的彈性體材料。TPE材料的硬度和物性容易做大范圍的調(diào)整,這使得TPE的應用非常廣泛。而且TPE能與PP,PE,ABS,PC,PA等材料有很好的結(jié)合性,二次成型時能實現(xiàn)真正意義上的包覆。TPE優(yōu)良的環(huán)保性能使它除了在常規(guī)領域廣泛應用外,還逐漸滲透到醫(yī)療及食品器具類行業(yè).對于食品器具類產(chǎn)品,一般都要求過食品級檢測*.對于TPE食品級檢測,美國FDA標準指的是FDA2600檢測標準,即通過蒸餾水及正己烷檢測. FDA2600這個標準其實是針對橡膠類的檢測,但是TPE實際上屬于合成橡膠范疇,與天然橡膠還是有很大的區(qū)別。正因為沒有完全貼合合成橡膠的指令,所以目前都是采用FDA2600這個標準來檢測。
關于食品級TPE,這是一個比較籠統(tǒng)的概念。用于食品行業(yè)的TPE,應根據(jù)TPE的實際產(chǎn)品應用,來確定不同的食品級檢測要求.如食品包裝盒,餐具手柄等食品接觸類產(chǎn)品,其食品級檢測方法,與牙膠,餐具,奶嘴等口腔接觸級產(chǎn)品是不同的。一般食品接觸類產(chǎn)品,檢測方法如下:總提取物(蒸餾水回流7 hours) 總提取物(初回流7 hours 后蒸餾水再回流2 hours);而對于口腔接觸級產(chǎn)品,除以上蒸餾水測試外,還需要做正己烷檢測。目前國內(nèi)TPE產(chǎn)品基本上都可以通過蒸餾水檢測,符合食品接觸級要求。
改性塑料增韌技術詳解
改性塑料在國民生活中扮演的角色越來越重要,尤其在汽車、家電等領域發(fā)揮著不可替代的作用。而對于門類眾多的改性塑料技術而言,塑料增韌技術一直被學術和工業(yè)界研究和關注,因為材料的韌性往往對產(chǎn)品的應用起著決定性的影響。本文,將為大家解答有關塑料增韌的幾個問題:
1. 塑料的韌性如何測試與評估?
2. 塑料增韌的原理何在?
3. 常用的增韌劑有哪些?
4. 塑料都有哪些增韌方法?
5. 如何理解增韌必先增容?
一、塑料韌性的性能表征
——剛性越大材料越不容易發(fā)生形變,韌性越大則越容易發(fā)生形變
韌性與剛性相對,是反映物體形變難易程度的一個屬性,剛性越大材料越不容易發(fā)生形變,韌性越大則越容易發(fā)生形變。通常,剛性越大,材料的硬度、拉伸強度、拉伸模量(楊氏模量)、彎曲強度、彎曲模量均較大;反之,韌性越大,斷裂伸長率和沖擊強度就越大。沖擊強度表現(xiàn)為樣條或制件承受沖擊的強度,通常泛指樣條在產(chǎn)生破裂前所吸收的能量。沖擊強度隨樣條形態(tài)、試驗方法及試樣條件表現(xiàn)不同的值,因此不能歸為材料的基本性質(zhì)。
不同的沖擊試驗方法所得到的結(jié)果是不能進行比較的
沖擊試驗的方法很多,依據(jù)試驗溫度分:有常溫沖擊、低溫沖擊和高溫沖擊三種;依據(jù)試樣受力狀態(tài),可分為彎曲沖擊-簡支梁和懸臂梁沖擊、拉伸沖擊、扭轉(zhuǎn)沖擊和剪切沖擊;依據(jù)采用的能量和沖擊次數(shù),可分為大能量的一次沖擊和小能量的多次沖擊試驗。不同材料或不同用途可選擇不同的沖擊試驗方法,并得到不同的結(jié)果,這些結(jié)果是不能進行比較的。
二.塑料增韌機理及影響因素
銀紋-剪切帶理論
在橡膠增韌塑料的共混體系中,橡膠顆粒的作用主要有兩個方面:
一方面,作為應力集中的中心,誘發(fā)基體產(chǎn)生大量的銀紋和剪切帶;
另一方面,控制銀紋的發(fā)展使銀紋及時終止而不致發(fā)展成破壞性的裂紋。
銀紋末端的應力場可以誘發(fā)剪切帶而使銀紋終止。當銀紋擴展到剪切帶時也會阻止銀紋的發(fā)展。在材料受到應力作用時大量的銀紋和剪切帶的產(chǎn)生和發(fā)展要消耗大量的能量,從而使得材料的韌性提高。銀紋化宏觀表現(xiàn)為應力白發(fā)現(xiàn)象,而剪切帶則與細頸產(chǎn)生相關,其在不同塑料基體中表現(xiàn)不同。
例如,HIPS基體韌性較小,銀紋化,應力發(fā)白,銀紋化體積增加,橫向尺寸基本不變,拉伸無細頸;增韌PVC,基體韌性大,屈服主要由剪切帶造成,有細頸,無應力發(fā)白;HIPS/PPO,銀紋、剪切帶都占有相當比例,細頸和應力發(fā)白現(xiàn)象同時產(chǎn)生。
【2】影響塑料增韌效果的因素主要有三點
基體樹脂的特性
研究表明,提高基體樹脂的韌性有利于提高增韌塑料的增韌效果,提高基體樹脂的韌性可通過以下途徑實現(xiàn):
增大基體樹脂的分子量,使分子量分布變得窄?。?
通過控制是否結(jié)晶以及結(jié)晶度、晶體尺寸和晶型等提高韌性。例如,PP中加入成核劑提高結(jié)晶速率,細化晶粒,從而提高斷裂韌性。
增韌劑的特性和用量
A. 增韌劑分散相粒徑的影響——對于彈性體增韌塑料,基體樹脂的特性不同,彈性體分散相粒徑的最佳值也不相同。例如,HIPS中橡膠粒徑最佳值為0.8-1.3μm,ABS最佳粒徑為0.3μm左右,PVC改性的ABS其最佳粒徑為0.1μm左右。
B. 增韌劑用量的影響——增韌劑的加入量存在一個最佳值,這與粒子間距參數(shù)有關;
C. 增韌劑玻璃化轉(zhuǎn)變溫度的影響——一般彈性體的玻璃化溫度越低,增韌效果越好;
D. 增韌劑與基體樹脂界面強度的影響——界面粘結(jié)強度對增韌效果的影響不同體系有所不同;
E. 彈性體增韌劑結(jié)構(gòu)的影響——與彈性體類型、交聯(lián)度等有關。
兩相間的結(jié)合力
兩相間具備良好的結(jié)合力,可以使得應力發(fā)生時可以在相間進行有效的傳遞從而消耗更多的能量,宏觀上塑料的綜合性能就越好,其中尤以沖擊強度的改善最為顯著。通常這種結(jié)合力可以理解為兩相之間的相互作用力,接枝共聚和嵌段共聚就是典型的增加兩相結(jié)合力的方法,不同的是它們通過化學合成的方法形成了化學鍵,如接枝共聚物HIPS、ABS,嵌段共聚物SBS、聚氨酯。
對于增韌劑增韌塑料而言,屬于物理共混的方法,但是其原理是一樣的。理想的共混體系應是兩組分既部分相容又各自成相,相間存在一界面層,在界面層中兩種聚合物的分子鏈相互擴散,有明顯的濃度梯度,通過增大共混組分間的相容性,使其具備良好的結(jié)合力,進而增強擴散使界面彌散,加大界面層的厚度。而這,即是塑料增韌亦是制備高分子合金的關鍵技術之所在
三、塑料增韌劑有哪些?如何劃分?
【1】塑料常用的增韌劑如何劃分
1.橡膠彈性體增韌:EPR(二元乙丙)、EPDM(三元乙丙)、順丁橡膠(BR)、天然橡膠(NR)、異丁烯橡膠(IBR)、丁腈橡膠(NBR)等;適用于所用塑料樹脂的增韌改性;
2. 熱塑性彈性體增韌:SBS、SEBS、POE、TPO、TPV等;多用于聚烯烴或非極性樹脂增韌,用于聚酯類、聚酰胺類等含有極性官能團的聚合物增韌時需加入相容劑;
3. 核-殼共聚物及反應型三元共聚物增韌:ACR(丙烯酸酯類)、MBS(丙烯酸甲酯-丁二烯-苯乙烯共聚物)、PTW(乙烯-丙烯酸丁酯—甲基丙烯酸縮水甘油酯共聚物)、E-MA-GMA(乙烯-丙烯酸甲酯—甲基丙烯酸縮水甘油酯共聚物)等;多用于工程塑料以及耐高溫高分子合金增韌
4. 高韌性塑料共混增韌:PP/PA、PP/ABS、PA/ABS、HIPS/PPO、PPS/PA、 PC/ABS、 PC/PBT等;高分子合金技術是制備高韌性工程塑料的重要途徑;
5. 其它方式增韌:納米粒子增韌(如納米CaCO3)、沙林樹脂(杜邦金屬離聚物)增韌等;
【2】在實際的工業(yè)生產(chǎn)中,改性塑料的增韌大概分以下情況:
a、合成樹脂本身韌性不足,需要提高韌性以滿足使用需求,如GPPS、均聚PP等;
b、大幅度提高塑料的韌性,實現(xiàn)超韌化、低溫環(huán)境長期使用的要求,如超韌尼龍;
c、對樹脂進行了填充、阻燃等改性后引起了材料的性能下降,此時必須進行有效的增韌。
通用塑料一般都是通過自由基加成聚合而得,分子主鏈及側(cè)鏈不含極性基團,增韌時添加橡膠粒子及彈性體粒子即可獲得較好的增韌效果;而工程塑料一般是由縮合聚合而得,分子鏈的側(cè)鏈或端基含有極性基團,增韌時可通過加入官能團化的橡膠或彈性體粒子較高的韌性。
常用樹脂的增韌劑種類
樹脂 |
常用增韌劑 |
目前增韌改性常用增韌劑 (增韌效果好) |
聚烯烴 |
NR、EPR、EPDM、SBS、SEBS、EVA |
POE、EPDM |
PVC |
NBR、MBS、CPE、TPU、ABS、ACR |
CPE、ACR |
ABS |
CPE、ACR、高膠粉 |
高膠粉 |
PC |
MBS、含硅丙烯酸酯橡膠 |
MBS |
PBT/PET |
E-GMA、EPDM-GMA、POE-GMA、核-殼型共聚物、離聚體 |
POE-GMA、E-MA-GMA |
PA |
NBR、EPDM、SBS、SEBS與POE及其對應接枝共聚物、核-殼型共聚物、UHMWPE、TPAE |
POE-MA、SEBS-MA、EPDM-MA |
PPO |
HIPS、SEBS-MA、POE-MA |
HIPS |
PPS |
SEBS-MA、HDPE-MA、TLCP、離聚體、PTFE、E-MA-GMA |
SEBS-MA、E-MA-GMA |
4、塑料增韌關鍵在于增容——親,你怎么看?
一般而言,塑料在受到外力作用時以界面脫黏、空洞化、基體剪切屈服的過程吸收、耗散能量,除了非極性塑料樹脂增韌時可以直接加入與其相容性好的彈性體粒子(相似相容原理)時,其它極性樹脂都需要有效的增容才能實現(xiàn)最終增韌的目的。前面提到的幾類接枝共聚物作為增韌劑時,都會與基體產(chǎn)生強烈的相互作用,例如:
(1) 帶環(huán)氧官能團型增韌機理:環(huán)氧基團開環(huán)后與聚合物端羥基、羧基或胺基發(fā)生加成反應;
(2) 核殼型增韌機理:外層官能團與組分充分相容,橡膠起到增韌效果;
(3) 離聚體型增韌機理:借助金屬離子與高分子鏈的羧酸根之間的絡合作用形成物理交聯(lián)網(wǎng)絡,從而起到增韌的作用。
具有工業(yè)價值的聚合物共混物實例及其增容方式
|
聚酰胺 |
聚酯 |
聚碳酸酯 |
聚苯醚 |
聚烯烴 |
彈性體 |
反應性 |
反應性 |
無 |
無 |
物理作用 |
聚烯烴 |
反應性 |
反應性 |
無 |
無 |
物理作用 |
核-殼改性劑 |
反應性 |
反應性 |
無 |
X |
X |
ABS |
反應性 |
反應性 |
無 |
X |
X |
聚酰胺 |
反應性2 |
反應性2 |
反應性2 |
反應性 |
反應性 |
聚酯 |
反應性2 |
反應性2 |
反應性2 |
反應性 |
反應性 |
X——表示此類共混物的文獻報道較少;無——表示不需要有效增容即可獲得有用的聚合物共混物;反應性2——表示共混物之間共混時可原位生成有用的接枝或嵌段共聚物提高組分間的相容性
綜上,塑料增韌無論對于結(jié)晶性塑料還是無定形塑料同等重要,而從通用塑料、工程塑料到特種工程塑料其耐熱性逐漸提高,成本價格也不斷攀升,這樣就對增韌劑的耐熱性、耐老化性等提出了更高的要求,同時也是對塑料改性增韌技術一次大的考驗,而最重要的也是最關鍵的一條就是和基體及組分保持良好的相容性!