
Four Sample Applications for the
KS57-Series Basic Timer Module

Application Note: KS57APN1 Application Engineering Department
LSI 2 Division, Micom Sector

BASIC TIMER APPLICATIONS

USING THE BASIC TIMER AS AN INTERVAL TIMER

The primary function of the basic timer (BT) is to measure elapsed time intervals. You can program the KS57-
series basic timer module to measure four different time intervals, based on the selected CPU clock. The basic
timer module includes a BT mode register, BMOD, and an 8-bit counter, BCNT.

The BCNT value is incremented each time a clock signal is detected which corresponds to the frequency you
select using BMOD register settings. When a counter overflow occurs, the basic timer interrupt request flag, IRQB
(location FB8H.0), is set to “1” to signal that the designated time interval has elapsed. Next, the basic timer
interrupt is generated, BCNT is cleared to zero, and counting resumes from 00H.

You can restart the basic timer (and clear the BCNT value) at any time by setting BMOD.3 to “1”.

Setting the Basic Timer Interval

The following program example shows how to set the basic timer interval:

BITS EMB
SMB 15
LD A,#1011B
LD BMOD,A ; Set the IRQB flag every 31.3 ms (fxx = 4.19 MHz)

Reading the BCNT Value

To eliminate the possibility of reading unstable data while the counter is incrementing, always execute a BCNT
read operation twice. If, after two consecutive read operations, the BCNT values match, you can select the latter
value as valid data. Continue to read the BCNT value, however, until this validation condition is met.

The following program code illustrates the looping read operation for BCNT:

BITS EMB
SMB 15
LD HL,#BCNT

LOOP
LD EA,@HL ; First read
LD YZ,EA
LD EA,@HL ; Second read
CPSE EA,YZ
JR LOOP

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-2

USING THE BASIC TIMER AS A WATCHDOG TIMER

You can use the basic timer as a watchdog timer to prevent program overruns or to escape from an infinite loop.
To implement this function in an application program, follow these guidelines:

1. Divide a program into several modules and estimate the time it takes the MCU to process each module under
normal operating conditions.

2. Set the basic timer interval for each module to be longer than the module’s normal processing time. This
basic timer interval setting should be performed at the start of each program module.

3. When the pre-set basic timer interval of a program module has elapsed, the BT counter (BCNT) should be
reset and the BT restarted.

4. If the BT cannot be restarted within the program module’s normal execution time, a basic timer interrupt is
generated to signal a possible system malfunction.

Source Code for Watchdog Timer Routine

;==

; Reset routine:

RESET
•
•
•
BITS EMB
SMB 15
LD A,#1101B
LD BMOD,A ; Make BT settings and start
BITS IEB
EI

;==

; Main routine:

MAIN
CALL MODULE1 ; After 31.3 ms (BMOD = #0BH, fxx = 4.19 MHz)
CALL MODULE2 ; After 7.8 ms (BMOD = #0DH, fxx = 4.19 MHz)
JP MAIN

MODULE1
BITS EMB
SMB 15
LD A,#1011B
LD BMOD,A
•
•
•
BITS EMB
SMB 15
BITS BMOD.3
RET

Source Code for Watchdog Timer Routine (Cont.)

MODULE2

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-3

BITS EMB
SMB 15
LD A,#1011B
LD BMOD,A
•
•
•
BITS EMB
SMB 15
BITS BMOD.3
RET

INTB
BITR IS0
BITR IS1
JP RESET

;==

USING THE BASIC TIMER TO RECEIVE SIGNALS FROM A REMOTE CONTROLLER

Function Description

The application program described in this section uses the basic timer to receive data transmitted from a remote
controller. The remote controller signal is input at the INT1 pin of a KS57-series microcontroller through a
preamplifier circuit, as shown in Figure 1-1.

To encode the data, the time intervals between remote control signals are measured. A typical remote controller
signal consists of a leader pulse, custom code, and data code (see KS57APN10). A remote controller receiver
circuit inverts the received signal and removes the carrier frequency.

In an actual application, considerable circuit noise may occur before the leader code is received. To protect
against signal disruption by this noise, this sample program uses the basic timer to detect the falling edge of the
leader code at the external interrupt input pin (INT1).

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-4

KA2184

KS57C2408

C2

GND

VOUTVIN

VCC

C1

f0

GND

VDD

INT1

+5 V

+
3.30 µF

+

–
47 µF

C3

–

22 Kž

100 ž

330 pF+

–

4.7 ž

1 µF

PH302B Receiver
Photo-Diode

180 Kž

Carrier frequency, f0 = 38 kHz

NOTE: The KA2184 remote controller integrated circuit is manufactured by Samsung Electronics.

Figure 1-1. Remote Controller Carrier Signal (f0) Receiver Circuit

60 ms 60 ms 60 ms

NORMAL ONE-FRAME PULSE CONTINUOUS PULSE

NOISE SIGNAL FROM
OTHER
REMOTE
CONTROLLER

Figure 1-2. Waveform Received From Remote Controller

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-5

RAM Allocation

Address

Data Value
(see NOTE)

40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH

1 2 3

CPCNT (2 nibbles)
STATE (1 nibble)
LECNT (1 nibble)
REDATA (5 nibbles)
Not used
CODEBUF (2 nibbles)
VALID (2 nibbles)
Flags:
VALFG (4EH.0)
CPFG (4EH.1)
FIRFG (4EH.2)

1 =
2 =
3 =
4 =
5 =
6 =
7 =
8 =

NOTE:

6 74 5 8

Figure 1-3. RAM Allocation for Basic Timer Remocon Application

For this application, data RAM is allocated to addresses 40H–4EH of memory bank 0, where

CPCNT: Counts the elapsed time since a valid code was input

STATE: Mode status, indicating the last signal edge which was detected

LECNT: Measures the time during which the leader code is Low level

REDATA: This area is used to store receive data

CODEBUF: Buffer area for last code input

VALID: Test data for code validity check

FLAGS:

VALFG (4EH.0): Flag is set when a valid code is input

CPFG (4EH.1): Flag is set when a valid constant pulse is input

FIRFG (4EH.2): Flag is set when the first 60-ms pulse is input

Programming Guidelines

To properly initialize the basic timer, write the following values to the basic timer mode register and the IPR
register:

BMOD ← #0FH ; Select the basic timer interrupt with a 1.95-ms interval

IPR ← #0BH ; Select INT1 as the highest-priority interrupt

Interrupts: INT1 and INTB

Nesting: Two levels

Port assignment: P1.1 (shared with INT1)

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-6

STATE ← #0H

CPCNT ← #0H

LECNT ← #0H

Clear CPFG

Clear VALFG

PCON ← #3H

BMOD ← #0FH

Disable Interrupts

INITIAL_REMO_RX

RET

IPR ← #0BH

Enable Interrupts

Disable INT1

Enable INTB

Clear the parameter indicating the edge being detected.

 Clear counter for checking continous pulse input.

 Clear counter for checking how long leader code remains Low.

 Set the CPU clock to the fastest operating frequency.

 Set the BT interval to 1.95 ms.

 Assign INT1 as the highest-priority interrupt.

Clear FIRFG

Figure 1-4. Program Flowchart for Remote Controller Rx Initialization

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-7

SRB ← 2

CPCNT = 29H

CPCNT ← CPCNT + 1

STATE ← 1

BMOD ← #0DH

IMOD1 ← 0

BITS IE1

Basic timer interrupt (INTB) processing for
remocon signal receiver subroutine

NO

YES

Check remocon receive state. If basic timer interrupt
is generated when STATE is not “0”, set to STATE =
“0” mode. If basic timer interrupt is generated when
STATE is”0”, set to STATE = “1” mode and for 4 ms
monitor the state of the Low level of the INT1 pin.

PUSH SB

INTB

CPFG ← 0

VALFG ← 0

STATE = 0H

YES

NO

STATE ← 0

BMOD ← 0FH
P1.1 = 0

YES

NO

LECNT ← 0

LECNT ← LECNT + 1

LECNT = 2H

BITR IE1

IRET

IRET

POP SB

If a continuous pulse is not input within 80 ms after
a valid code is input, the continuous pulse check
flag and the valid code flag are cleared to “0”.

Set basic timer interval to 7.82 ms.

Select rising edge trigger for INT1.

YES

NO

Figure 1-5. Program Flowchart for Basic Timer Interrupt (INTB) Processing

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-8

POP SB

IRET

EI

PUSH SB

INT1

DI

EA ← BCNT

STATE = 1

YES

100-µs DELAY

NO
STATE = 2

YES

NO
STATE = 3

YES

LEADER DATAINJump to leader
pulse High time
check routine.

Jump to data code
check routine.

P1.1 =0

NO

BMOD.3 ← 1

10H<EA<41H

YES

NO

YES

RET1

Check leader
pulse Low time.

If an INT1 interrupt is triggered by a
rising edge when STATE = “1”,
check for Low level at the INT1 pin.

Reset and start BT.

STATE ← 2

IMOD1 ← 1H Set IMOD1 to the
falling edge trigger.

Enable all interrupts.

RET1

Check leader pulse Low time:
(0.5 ms < Low time < 2 ms).

State for checking the
leader pulse High time.

BMOD ← 0FH

BITR IE1

STATE ← 0

Save SB.

Disable all interrupts.

Read basic timer count register to
check the INT1 interrupt interval.

CPCNT ← 0

STATE0

Figure 1-6. Program Flowchart for INT1 Processing

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-9

LEADER

P1.1 =0

YES

BMOD.3 ← 1

83H<EA<A4H

YES

NO

RET1

NO

STATE0

A ← 8H

A ← 0H

HL ← HL – 1

(HL) ← A

Initialize the
REDATA area.

L = 4H

YES

STATE ← 3H

HL ← 4CH

RET1

NO

Check the INT1 pin.

Clear BCNT and start
the basic timer.

Check the High level time
of the leader pulse.

If 4 ms < Low time < 5 ms,
 the leader pulse is valid.

Initiate leader pulse High
level time check routine.

Enter data
code mode.

Figure 1-7. Program Flowchart for Leader Pulse High Level Check Routine

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-10

DATAIN

P1.1 =0

YES

BMOD.3 ← 1

10H<EA<52H

YES

NO

RET1

NO

STATE0

Check the INT1 pin.

Start the basic timer.

If 0.5 ms < EA < 2.5 ms,
data code is available.

C ← 1

BCNT < 3AH

YES

NO

C ← 0

HL ← #49H

C = 1

YES

NO

HL ← HL – 1

A ← (HL)

RRC A

A ↔ (HL)

L = 4H

YES

NO

RET1

Rotate REDATA
1-bit toward LSB.

Check if 20 bits of custom
and data code have been

completely input.

If 0.5 ms < EA < 1.8 ms, data is ”0”.
If 1.8 ms < EA < 2.5 ms, data is “1”.

1

Figure 1-8. Program Flowchart for Data Code Check Routine

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-11

VALFG = 1

NO

YES

Check
custom code

YES

NO

FIRFG ← 0

VALID ← codeBUF

VALFG ← 1

STATE0

STATE0

1

FIRFG = 1

YES

Check
data code

YES

NO

CPFG ← 0

STCHK

STATE0

Check
data code

YES

NO

CPFG ← 1 STCHK

NO

codeBUF ←
 data code

STATE0

FIRFG ← 1

STCHK

Figure 1-9. Program Flowchart for Custom Code Check

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-12

Source Code for Remote Controller Application

; CHIP C:\SMDSII\DATA\57C2408.DEF

CPCNT EQU 40H
STATE EQU 42H
LECNT EQU 43H
REDATA EQU 44H
VALID EQU 4CH
FLAG EQU 4EH
VALFG EQU FLAG.0
CPFG EQU FLAG.1
FIRFG EQU FLAG.2
CUSTOMA EQU 55H
CUSTOMB EQU 56H

ORG 0000H
VENT1 0,1,INTB
ORG 0006H
VENT3 0,0,INT1

; ==

; Initialize remocon receive subroutine:

INITIAL_REMO_RX
BITR EMB
LD EA,#00H
LD STATE,A
LD CPCNT,EA
LD LECNT,A
BITR CPFG
BITR VALFG
BITR FIRFG
LD A,#3H
LD PCON,A ; Set to high-speed mode
LD A,#0FH
LD BMOD,A ; Set timer interval to 1.95 ms
DI
LD A,#0BH
LD IPR,A ; Assign INT1 highest interrupt priority level
EI
BITR IE1
BITS IEB
RET

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-13

Source Code for Remote Controller Application (Cont.)

; INTB processing:

INTB
PUSH SB
SRB 2 ; EMB = 0, SRB = 2
LD EA,CPCNT ; CPCNT = 29H check
LD YZ,#0D7H
ADS EA,YZ ; Repeat code check in 80-ms intervals
JPS INCRIT

LD EA,#00H
LD VALID,EA
BITR CPFG ; Repeat input flag ← “0”
BITR VALFG ; Valid code input flag ← “0”

; Present remocon input time check

MODCHK
LD A,STATE
CPSE A,#0H
JPS DISINT ; Not a valid state for leader pulse check
BTSF P1.1 ; Check the INT1 pin
JPS BTCLR
LD HL,#LECNT ; Increment LECNT
INCS @HL
NOP
CPSE @HL,#02H ; Check in 4-ms intervals
JPS IBF
LD A,#1H
LD STATE,A ; STATE ← 1H
LD A,#0H
LD IMOD1,A ; Select INT1 rising edge trigger
LD A,#0DH ; Set basic interval time to 7.82 ms
LD BMOD,A
BITS IE1

BTCLR
LD A,#0H
LD LECNT,A ; LECNT ← 0H
JPS IBF

DISINT
BITR IE0
LD A,#0H
LD STATE,A ; STATE ← 0H
LD A,#0FH
LD BMOD,A ; Set basic interval time to 1.95 ms
JR BTCLR

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-14

Source Code for Remote Controller Application (Cont.)

INCRIT
LD EA,CPCNT
ADS EA,#01H ; CPCNT ← CPCNT + 1
LD CPCNT,EA
JPS MODCHK

IBF
POP SB
IRET

ORG 0300H

JPS LEADCK ; Jump to routine that checks Low time of leader pulse
JPS LEADER ; Jump to routine that checks High time of leader pulse
JPS DATAIN ; Jump to the data code check routine

; INT1 processing:

INT1
DI
PUSH EA ; Push EA, HL, WX, YZ, and SB values onto stack
PUSH HL
PUSH WX
PUSH YZ
PUSH SB

; 100-µs DELAY:

LD EA,#15H

LOP
DECS EA
JR LOP

; Multiple branch processing:

LD A,STATE
LD E,#0H
ADS EA,#0FFH
NOP
LD WX,EA
ADS WX,EA ; WX ← (STATE – 1) × 2

; Read BCNT:

LOOP1
LD EA,BCNT
LD YZ,EA
LD EA,BCNT
CPSE EA,YZ
JR LOOP1
JR @WX ; Multi-level branch

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-15

Source Code for Remote Controller Application (Cont.)

LEADCK
BTST P1.1 ; Check the Low level time of the leader pulse
JPS RET1
BITS BMOD.3 ; Restart the basic timer
ADS EA,#0F0H ; EA > #10H
JPS STATE0
ADS EA,#0DEH ; EA < #0100 – #0DE + #1F = #41H

; (0.5 ms < BCNT < 2 ms)
JPS STATE1 ; Yes

STATE0
LD A,#0H ; STATE ← 0
LD STATE,A
LD A,#0FH
LD BMOD,A ; Set basic timer interval to 1.95 ms
BITR IE1
LD EA,#0
LD CPCNT,EA ; Clear CPCNT

RET1
POP SB
POP YZ
POP WX
POP HL
POP EA
EI
IRET

STATE1
LD A,#1H ; Select INT1 falling edge trigger
LD IMOD1,A
INCS STATE ; STATE ← 2
JPS RET1

; Leader pulse check routine:

LEADER
BTSF P1.1 ; Check INT1 pin Low level
JPS RET1
BITS BMOD.3 ; Restart the basic timer
ADS EA,#7EH ; EA > 83H
JPS STATE0
ADS EA,#9DH ; EA < #100 – #9D + 41 = 0A4H
JPS STATE3 ; Yes
JPS STATE0

STATE3
INCS STATE ; STATE ← 3
LD HL,#49H
LD A,#8H ; # (VALID – 1) address MSB = “1”

Source Code for Remote Controller Application (Cont.)

REMO1

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-16

LD A,#0H ; Clear all other bits
DECS HL
LD @HL,A
CPSE L,#4H
JR REMO1
JPS RET1

; Data input subroutine

DATAIN
BTSF P1.1 ; Check P1.1
JPS RET1
BITS BMOD.3 ; Start the basic timer
ADS EA,#0F0H ; EA > 10
JPS STATE0
ADS EA,#0BEH ; EA < 100 – 0BE + 10 = 2
JR DAT0 ; Yes, 0.5 ms < EA < 2.5 ms
JPS STATE0

DAT0
SCF
ADS EA,#18H ; EA > 0FF – 18 – 0BE – 0F0 = 3AH
RCF ; 0.5 ms < EA < 1.8 ms data = “0”
LD HL,#49H ; 1.8 ms < EA < 2.5 ms data = “1”

DATABR
DECS HL ; Rotate remocon receive data one bit toward LSB
LD A,@HL
RRC A
XCH A,@HL
CPSE L,#4H
JR DATABR
BTST C ; Check for 20-bit data input completion
JPS RET1 ; No

APPLICATION NOTE: KS57APN1 BASIC TIMER APPLICATIONS

1-17

Source Code for Remote Controller Application (Cont.)

; Custom code check routine:

LD EA,REDATA ; Yes, 20-bit data input complete
LD HL,#CUSTOMA ; Custom code = read custom data?
CPSE EA,HL
JPS STATE0
LD A,REDATA + 2
LD E,#CUSTOMB
CPSE A,E
JPS STATE0
BTST VALFG ; Check VALFG
JR FIRCHK
LD HL,#(REDATA+3) ; Read data code = valid data code
LD EA,VALID
CPSE EA,@HL
JPS STCHK
BITS CPFG ; Repeat key is pressed
JPS STATE0

FIRCHK
BTST FIRFG ; Check FIRFG
JPS STCHK
BITR FIRFG
LD HL,#(REDATA+3) ; Read data code = codeBUF data
LD EA,codeBUF
CPSE EA,@HL
JPS STCHK
LD EA,codeBUF ; VALID ← codeBUF
LD VALID,EA
BITR CPFG
BITS VALFG
JPS STATE0

STCHK
BITS FIRFG ; codeBUF ← read data code
LD EA,REDATA+3
LD codeBUF,EA
JPS STATE0

; ==

BASIC TIMER APPLICATIONS APPLICATION NOTE: KS57APN1

1-18

USING THE BASIC TIMER TO MEASURE PULSE WIDTH

Function Description

The following routine uses the basic timer to measure the width of the High-level pulse that is input at the INT4
interrupt pin (with both rising and falling edge detection). In this case, the pulse width does not exceed the basic
timer counter (BCNT) value, which is at least 7.8 ms.

Source Code for Pulse Width Measurement Routine

; ==

BUFF EQU 30H
BUFF EQU 32.OH

; INT4 processing:

LOOP
LD EA,BCNT ; EMB = “0”
LD YZ,EA
LD EA,BCNT
CPSE EA,YZ
JR LOOP
BTST P1.3 ; P1.3 = “1”?
JR AA ; No
LD BUFF,EA ; Store the BCNT value
BITR FLAG ; Clear the data present flag
IRET

AA
LD EA,BUFF
SBS YZ,EA
NOP
LD EA,YZ
LD BUFF,EA ; Store data
BITS FLAG ; Set the data present flag
IRET

; ==

